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A simplified model of the mixed state of a superconductor of the second kind is proposed. The generation 
and parallel alignment of "fluxoids'' under the influence of an externally applied magnetic field results in a 
medium whose conductivity is position-dependent in all directions perpendicular to the applied field. The 
proposed model is that of a two-fluid superconductor with carrier concentrations sinusoi'dally space-modu
lated in only one direction. This model is found to account extremely well for the experimentally observed 
behavior. In particular, the large dependence of the absorption of energy on the relative angle between ap
plied dc field and induced microwave current is satisfactorily explained. The ratio of absorbed energies in the 
perpendicular and parallel configurations is predicted to lie between 1 and 7, whereas recent experiments with 
various materials have yielded ratios between 1 and 15. Our model also predicts that this anisotropy is not 
very dependent on temperature and applied magnetic field, also in agreement with experimental findings. 

I. INTRODUCTION 

THE study of superconductivity by the method of 
microwave surface impedance measurements is a 

very young science. Most investigations have so far 
been restricted to so-called "soft superconductors," or 
"superconductors of the first kind." Experiments 
performed in the absence of an applied dc magnetic 
field1,2 have found satisfactory theoretical explana
tions.3-5 But when a magnetic field is applied, results6,7 

are found which present day8 theory has not been able 
to explain. "Hard superconductors," or "super
conductors of the second kind" (in this paper we shall 
attribute the same meaning to both words), are still 
far less well known than their "soft" counterparts. 
Since microwave surface impedance measurements are 
themselves generally difficult to interpret, it would 
seem that such measurements performed with hard 
superconductors are unlikely at this stage of the art to 
yield useful information. Several factors, however, seem 
to contradict this pessimistic viewpoint. First of all, 
the few experiments that have been performed9 with 
hard superconductors have revealed large, clearly de
fined, and reproducible effects. Secondly, hard super
conductors are characterized by short mean free paths 
of their normal carriers, so that, in general, classical 
conditions prevail, and the surface impedance problem 
is accordingly simplified. Thirdly, we shall see in 
Sec. I I that strong magnetic fields induce a very special 
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862 (1959). 
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4 1 . M. Khalatnikov and A. A. Abrikosov, Advan. Phys. 8, 45 

(1959). 
5 P. B. Miller, Phys. Rev. 118, 928 (1960). 
6 M. Spiewak, Phys. Rev. Letters 1, 136 (1958); Phys. Rev. 

113, 1479 (1959). 
7 P. L. Richards, Phys. Rev. 126, 912 (1962). 
8 G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. 118, 77 

(1960). 
9 M . Cardona, G. Fischer, and B. Rosemblum, Phys. Rev. 

Letters 12, 101 (1964); M. Cardona and B. Rosenblum, Phys. 
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Phys. Letters 9, 220 (1964). 

kind of directivity inside hard superconductors which 
is not of the usual tensorial nature. This directivity is of 
such strength and so characteristic of hard super
conductors that very typical and strong effects are 
expected to result from it. I t is therefore likely that an 
understanding of the striking effects observed in the 
surface impedance of hard superconductors may be 
arrived at before one understands the smaller, and 
perhaps more subtle effects, found with soft super
conductors. 

II. SUPERCONDUCTORS OF THE SECOND KIND 

The mixed state of a superconductor of the second 
kind is a good example of a medium where the con
ductivity is position-dependent. Magnetic fields of a 
certain strength can penetrate superconductors of the 
second kind without necessarily destroying super
conductivity. According to the most current views,10 

this field penetration is in the form of quantized bundles 
of flux, so-called fluxoids, at the center of which the 
material is normal and the field obtains a maximum. As 
one moves from the center of the fluxoid, the material 
becomes superconducting, and the field decays essen
tially as it would at a normal superconducting interface. 
Since the equilibrium distribution of normal and super
conducting electrons is a function of the local magnetic 
field, the conductivity a becomes position-dependent. 
In the Abrikosov10 theory the fluxoids run parallel to 
the applied field, and their intersection with a perpen
dicular plane indicates that they are disposed in a square 
array. Exceptionally, a triangular array may be more 
stable. In an actual hard superconductor this perfectly 
regular arrangement may not obtain, but it is reasonable 
to assume that the separation between nearest fluxoids 
will not differ very much from an average value d. This 
average value d is a function of the applied field H. At 
fields just above Hci, the onset of field penetration, the 
separation of fluxoids is larger than the penetration 
depth X. As the field increases, the average separation d 

10 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 
[English transl.: Soviet Phys.—JETP 5, 1174 (1957)], see also 
Ref. 14. 
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between fluxoids decreases and, according to 
Abrikosov,10 reaches a value of AoA just before the 
superconductor finally becomes normal. In the above 
quotient, X0 is the actual weak-field penetration depth 
at the temperature T considered, and K is the Ginzburg-
Landau11 parameter. Gor'kov12 has shown that for pure 
metals K=0.96\0 /£O, where £o is Pippard's coherence 
distance.13 Thus, at fields near the quenching field Hc2 

the average fluxoid separation d is about equal to the 
coherence distance £o. 

The relaxation time r of normal electrons in super
conductors of the second kind is generally short, so 
that for the microwave frequencies considered here (up 
to 100 Gc/sec), one has wr<<Cl. Under these conditions 
we can reasonably assume that the equilibrium state of 
the superconductor follows the microwave field, and 
the size of the skin depth 5 is then identical with the 
dc penetration depth X. We therefore conclude that for 
fields just above Hci the fluxoid separation d is larger 
than (81, whereas at fields just below Z7c2, this separa
tion is only a fraction 1/K of 18 |. At fields only moder
ately above the onset of the mixed state, Abrikosov10 

has shown that the field at the center of the fluxoid is 
only about twice the applied field. Since, at the same 
time, the average field inside the superconductor has 
already increased to a good fraction of the applied field, 
it is obvious that the average separation between 
fluxoids cannot be much different from the penetration 
depth X. Consequently, once flux penetration occurs, a 
rather large number of fluxoids move into the super
conductor, as exemplified by the vertical slope of the 
magnetization curve derived by Goodman14 from 
Abrikosov's theory. The average fluxoid separation 
quickly becomes of order X, at which separation fluxoids 
start to interact. As the field increases further the 
separation decreases much less rapidly, slowly reaching 
the value \/K as H approaches #c2 . 

Let us assume as in Fig. 1 an external dc field H to 
be applied parallel to the surface z=0 and take the 
direction of H as x axis. Because of the fluxoid alignment 
parallel to H, we do not expect the equilibrium distribu
tion of normal and superconducting electrons nn and ns 

to vary in that direction. In directions y and z, however, 
we do expect variations of nn, ns, and consequently of <r, 
the conductivity. We have then to deal with two basic 
configurations, parallel when the microwave current is 
flowing parallel to the fluxoids, and perpendicular when 
the microwave current is flowing in directions perpen
dicular to the fluxoids. 

It may be worth mentioning that we expect the two-
field configurations to yield different surface imped-

11 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 
20, 1064 (1950). 

12 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959); 
37, 833 (1959); 37, 1407 (1959) [English transl.: Soviet Phys.— 
JETP 9, 1364 (1959); 10, 593 (1960); 10, 998 (I960)]. 

13 A. B. Pippard, Proc. Roy. Soc. (London) A216, 745 (1953). 
14 B. B. Goodman, IBM Res. Develop. J. 6, 63 (1962). 
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FIG. 1. Coordinate system to be used throughout this paper. 
The medium extends over all z>0 and radiation is impinging 
parallel to the z axis. The cosine function symbolizes the periodic 
conductivity in the y direction. 

ances. It is true that to the incident microwaves the 
metal acts like a short circuit with respect to a high-
impedance source. A constant total current is therefore 
induced in the metal, irrespective of local variations of 
the conductivity. As a consequence the magnetic 
induction at the surface z=0 is independent of co
ordinate y. For z>0, however, H(y,z) does vary with y. 
E(y,2), on the other hand, is never independent of y, 
even when z~0. Since we cannot assume a priori 
E(y,s) to be the same in the two configurations, we 
cannot expect a priori to find identical surface 
impedances. 

III. MICROWAVE SURFACE IMPEDANCE 

Let us choose a Cartesian coordinate system as shown 
in Fig. 1, with a semi-infinite metal extending over the 
region z>0. A polarized microwave beam is assumed 
to fall vertically onto the metal from the vacuum 
(z ̂  0). A system of electric and magnetic fields is set up 
in the metal near the surface, but because of skin effect 
these fields decay rapidly as one moves deeper into the 
metal. The surface impedance Z is then defined as the 
ratio of the electric field at the surface to the component 
parallel to the surface of the induced current density, 
ju, integrated from z=0 to z= <*>, 

Z=E(z = 0) jn(z)dz. (1) 

The two main factors which determine the microwave 
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surface impedance of a metal are the conditions at the 
boundary z= 0, and the relation between current density 
j , and the electromagnetic fields E and B. One relation 
between j and B is contained in Maxwell's equations. 
Neglecting displacement currents15 and assuming a time 
dependence of the form exp(ioot), these equations read 

V X B = ( 4 * A ) J , (2) 

V X E - - ( i c o A ) B . (3) 

Elimination of B gives a differential equation for E, 

V X V X E = - ( 4 T T ^ A 2 ) J J (4) 

which is basic to all microwave surface impedance 
problems of metals. This differential equation can be 
solved only once the boundary conditions are specified, 
and if a second relation between j and E is given. A 
great deal of attention has been devoted to such 
situations where the (j— E) relation is nonlocal,16'11 

that is, of the form 

j ( r ) = [a'K(t-x')-W)'dzr'. (5) 

In addition, the more general problem when the product 
<TK (r—r/) is of tensorial nature has also been investi
gated.18 All theories, however, have assumed a to be 
independent of position and independent only on r— r', 
and not on r and r', separately. The problem of a 
position-dependent <r has not received any attention. 
In a paper about to appear elsewhere,19 we have 
investigated the microwave surface impedance of a 
semi-infinite medium in which a scalar but complex 
conductivity <r is periodic in a direction parallel to the 
surface 2=0 . The calculation has been carried out in 
detail in the special case when the conductivity is of 
the form 

a (y) = (7o+ 2<7i cos (ky), (6) 

with a period d, 

d=2ir/k, (7) 

and when the (j — E) relation is strictly local. 
The problem with a conductivity <r(y) periodic in 

one direction is, of course, not equivalent to the 
situation obtaining in the mixed state of a hard super
conductor, where the conductivity cr{y,z) is periodic in 
the two directions y and z. However, the first and 
simpler one of these two problems has in common with 

15 Displacement currents can be neglected up to frequencies 
of 100 Gc/sec when the magnitude of the conductivity |<r| is 
always larger than about one (£2 cm)-1. 

16 G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. 
(London) A195, 336 (1948). 

17 R. B. Dingle, Physica 19, 311 (1953). 
18 A. B. Pippard, Proc. Roy. Soc. (London) A203, 98 (1950); 

and A224, 273 (1954); E. H. Sondheimer, Proc. Roy. Soc. 
(London) A224, 260 (1954); G. E. Smith, Phys. Rev. 115, 1561 
(1959). 

19 G. Fischer, J. Math. Phys. 5, 944 (1964). 

the more complex second one that two basically 
different configurations may be defined with respect to 
the polarization of the microwave beam. We shall 
speak of a parallel configuration when the induced 
microwave current is flowing parallel to the conduc
tivity pattern (i.e., parallel to the % axis) and of a 
perpendicular configuration when the microwave current 
is flowing perpendicularly to the conductivity pattern 
(i.e., parallel to the y axis). In spite of neglecting the 
variation of a with coordinate z, the formulas derived 
in Ref. 19 reproduce some of the essential features 
observed in recent measurements of the microwave 
surface impedance of hard superconductors.9 We shall 
therefore present and discuss these results here. 

IV. CONDUCTIVITY OF HARD SUPERCONDUCTORS 

In order to appreciate the conclusions reached in 
Ref. 19 we have to obtain an estimate of the relative 
magnitude of the position-dependent part of the 
conductivity. Since we only need an estimate, it will 
be sufficient to derive it in terms of a two-fluid model, 
for which the high-frequency conductivity is 

nne
2r nse

2 e2 (nn-\-ns)uT—ins 
(7 = ; i = ; . (8) 

m(l-\rioor) mo) mco l-j-icor 

In (8) we have taken identical masses for normal and 
superconducting electrons, the concentrations of which 
have been labeled nn and n8, respectively. In a hard 
superconductor, nn and ns vary with position while, of 
course, their sum remains constant. At the center of 
fluxoi'ds, obviously, ns = 0. 

Let us decompose nn and ns into a constant and a 
variable part. With obvious meanings of the symbols, 
we write 

no=nn+n8= (nno+n±)+(nso— n±). (9) 

For the constant part <r0 and the variable part o-± of 
the conductivity we then have 

e2 

aQ= (WoCOr__^0) ? (io) 
fWa>(l+icor) 

e2 

*±= ,4 . (+in±). (11) 
wo)(l+icor) 

Calling n± and 2G\ the extremal values of %. and <T± in 
order to be consistent with our particular form (6) 
of a, we have also 

e2 

ai== ( + f W l ) . (12) 
2mo)(l-\-io)r) 

Since both nn and ns are never allowed to become 
negative, the largest permissible \ni\ can only equal 
the smaller one of the two parameters nno and nso. 

We seek to determine, now, the range of complex 
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FIG. 2. Complex a=0-1/0-0 
plane. The only possible values 
of a are those within the two 
hatched semicircles. 

Complex a plane 
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values which the ratio a=o-i/ao may obtain when the 
other parameters assume any of the values that they are 
allowed to take. We have 
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Let us introduce two parameters u and v. 

u=ni/nso, and v=noo)r/nSQ. 

(13) 

(14) 

v can assume any real positive value, whereas u is 
restricted to real values between — 1 and + 1 . 

v^Q, (15a) 

- K ^ + l. (15b) 
a then becomes 

a = Z + f F = J f * [ ( - l + w ) / ( l + ^ ) ] , (16) 

which defines X and F , 

X = - i « [ l / ( l + ^ ) ] , (17) 

F = + ^ [ > / ( l + * 2 ) ] . (18) 

In the complex a plane, Eqs. (15) to (18) define pairs 
of semicircles or segments of straight lines, depending 
whether one considers v or u to be a variable parameter. 
If v is taken as parameter, its elimination from (17) 
and (18) yields the equations of a pair of circles, 

( Z ± H 2 + F 2 = ( i ^ ) 2 , (19a) 

whereas the elimination of u gives the straight line 

Y=-vX. (19b) 

Only semicircles of the kind marked with a heavy 
line in Fig. 2 are allowed, since the other|half circles 
violate (15a). Likewise, only the heavily marked 

straight line segments satisfy (15b) and (19b). For 
a given u, all permitted values of a lie on the two 
semicircles drawn with a full line in Fig. 2. The largest 
semicircles are obtained when u— ± 1, and are indicated 
with dashed lines. All permitted values of a are therefore 
comprised within the hatched areas of Fig. 2, and we 
can conclude that under all circumstances one has 

a. (20) 

An interesting special limit occurs when r = 0 and 
thus also fl^=0, and F ^ O . a is then purely real and 
comprised in the range 

. i < / 7 < _ l _ i i.e. •7 2<A (21) 

If, in that same limit, we look at (10) and (12), we see 
that 

a- 0 ( r^0)= — i(nsoe2/mo)), (22) 

a± ( r = 0 ) = + i (n±e2/mo)), 

and in terms of n± and 0-1, 

a 1 ( r = 0 ) = + i (nie2/2mco). 

(23) 

(24) 

In this limit, then, <r(y,z) is purely imaginary negative. 
This leads to a purely imaginary surface impedance, 
meaning that there is no absorption of incident radia
tion. This result is not surprising since power can be 
dissipated only via normal electrons, and r = 0 means 
that these electrons are completely immobile, incapable 
of absorbing energy from any field. To secure the 
possibility of energy absorption, cor cannot be neglected 
altogether, but with cor<3Cl, expansion to linear terms 
will usually suffice. 

The foregoing analysis has allowed us to put upper 
bounds to the amplitude of the variable part of the 
conductivity of a superconductor of the second kind. 
We have not, however, derived any information relative 
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to the shape of the function <r(y,z). The actual shape of 
<r(y,z) would have to be derived from a theory of hard 
superconductors; this could probably be done starting 
from the theory of Abrikosov,10 but will not be 
attempted here. The knowledge of a(y,z) has to be 
gained in the form of knowledge in function of tempera
ture T, applied dc magnetic field H, and material 
constants of the superconductor of the following 
parameters : 

nsQ=nso(T,H), (25) 

n±=n±(T,H), (26) 

k = k(T,H). (27) 

(26) also implies knowledge of n\ and ah and we recall 
that d= 2-K/~k is the spatial period of n^. From (26) and 
(27) one should therefore be able to derive a relation 
between <TI and d. Following the discussion of Sec. II , 
we can say that when H is only slightly above Hci, k 
will be near the small end of its range, whereas ai/cro 
will be large. As H increases, k will increase, and vi/cro 
decrease, although ci/Vo may at first remain more or 
less constant until the density of fluxoi'ds has reached 
the point where they start to interact appreciably. 

In the absence of any detailed knowledge about 
(r(y,z), we shall then choose a conductivity of the form 
given by (6), but where <TI and k have the meanings 
and properties attributed to them in this section. 

V. SURFACE IMPEDANCE OF THE 
PERIODIC MODEL 

Let us assume a semi-infinite metal and a vertically 
incident microwave beam as represented schematically 
in Fig. 1 with a conductivity as given by (6). We have 
shown in Ref. 19 that two independent field configura
tions result with generally different surface impedances. 
Following the definitions of Sec. I l l , we call Z n and ZL 

the impedances obtaining when Ey=0 or Ex=0, 
respectively. According to Ref. 19, the average surface 
impedances Zm and Z0i can be expressed by a common 
formula with slightly different meanings of the symbols 
which have all been listed in Table I. 

(T+B-i)(T+Byi2-(T-B-i){T-Byi2 

Zo=Zoo • 
2B(T2-B2)^2 

(28) 

TABLE I. Meaning of the symbols appearing 
in formulas (28), etc. 

•Zoo 

r 
B 
b 
a 

w 1/V 
k 

For Zn 

47r^o50/c2= (47rioAVo)1/2 

1+ib 
(lb2+2a2yt2 

S0
2&2 = 47r 2 (5o 2 / ^ ) 
cri/<ro — 8o2/di2 

Awiaxre/c2 

4tnri(a<Ti/c2 

2<ir/d 

For Zi 

idem 
idem 

[_W+2a2(l+b)Jl2 

idem 
idem 
idem 
idem 
idem 

The entire difference between the two configurations is 
concentrated in parameter B. 

The spatial variation of Zn and ZL is given by 
another common formula 

Z(y) = Z0+2Z1cos(ky), (29) 
where 

(T+BuY^-iT-Buyi2 

Zi,, = -Zooa , (30) 
2Bn(T2-Bn2)112 

and 
(T+B^-iV-B,)112 

Zu= -Z0oa(i+b) . (31) 
2J3L(r2-.£J

2)1/2 

The parameters of these formulas are also contained 
in Table I. 

Formulas (28) to (31) are valid provided the following 
condition is true (cf. Ref. 19): 

d2/1So21«(4TT)2I cro/cn | -1601 c7o/Vi | . (32) 

We know that |cr0/cri| ^ 2 , and since 80 is simply the 
average skin depth, (32) receives a simple interpreta
tion; for the largest possible variation of the conduc
tivity (28) to (31) are valid as soon as d becomes smaller 
than about five skin depths. But when d is larger than 
|5o|, both configurations give practically identical 
results, the surface impedance Z(y) being then uniquely 
determined by the local value <r(y) of the conductivity 

Z(y) = [ J . (33) 
\c2(o-o+2(71cos(^))/ 

The average impedance Z0 is then given by the integral 
over one period oiZ(y)/d. When | ai/ao | <3C1 this average 
tends toward Z0o, whereas for larger ratios one is led 
to complex Legendre integrals. 

From Eq. (33), we see that in the range d> \8o\, a 
local relationship between z and a results. This is in 
contrast to what obtains in the range described by (32), 
that is, when \80\>d, where formulas (28) to (31) 
apply. In spite of assuming a local "current-field" 
(j— E) relation, one does not end up with a local (Z—a) 
relation. There is a smearing-out effect which results 
here not from a long mean free path /, but because of 
field penetration effects. The fields cannot vary much 
in space over distances smaller than a skin depth. With 
this in mind, one can give a very pertinent interpreta
tion to the range of validity (32) of our treatment. 
When \d/8o\ is very large, a Fourier expansion of the 
fields E and B, and consequently also of Z(y), restricted 
to only one oscillatory term, will be satisfactory only 
when |ari/cro\ = \a\ is sufficiently small. I t is then 
possible to expand any function /(cr). Thus, 

/GO = /fro) + (df/da)2<n cos {ky), (34) 

and one can easily check that under these circum
stances, formulas (28) to (31) give identical results to 
formula (33) expanded according to (34). On the other 
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hand, if | d/60\ is not very large, the smearing-out effect 
on Z(y) insures that, even when the conductivity varies 
very much, (i.e., | a | ~ | ) , E, B, and Z(y) do not vary 
very much, and a Fourier expansion with but one 
oscillatory term is again satisfactory. The conditions 
under which formulas (28) to (31) are the least satis
factory are such, therefore, that \a\ approaches J, and 
\d/8o\ is very much larger than unity. If we apply 
these considerations to superconductors of the second 
kind, we find that conditions under which our treatment 
is valid are practically always realized. | a\ is largest at 
low-magnetic field H above Uc\\ but we have seen in 
Sec. I I that for fields little larger than Hci, the fluxoid 
separation d is approximately of the same size as 
penetration depth and skin depth 

d~\h\2&. (35) 

With increasing field H, the separation d decreases, and 
while | a \ may, at first, remain constant, it will eventu
ally also decrease when H approaches Hc2. 

Expressions (28) to (31) are sufficiently complex 
that comparison in general terms of the two configura
tions is very difficult. However, if we limit ourselves to 
such conditions as apply to superconductors of the 
second kind, these expressions take on very simple 
forms. With (35) we find 

| J | = j f e » | W | = 4 i r a ( | W | / ^ ) « 4 Q » l , (36) 

and, therefore, also 

| 6 | » | a | or \a?\. (37) 

Under these conditions (28) reduces to 

Z o i £ ^ o o = ( 4 i r V ^ o ) 1 / 2 , (38) 
and 

Zoi^Z 0 0 ( l -2a 2 )~ 1 / 2 . (39) 

I t is interesting to note that every explicit dependence 
on the period d has disappeared from (38) and (39). In 
spite of their apparent simplicity, we should like to 
point out, however, that these formulas contain a 
dependence on field H, frequency co, and temperature T, 
since a0 is itself dependent on these variables. 

IV. RESULTS AND DISCUSSION 

Although our model only reproduces "some" of the 
characteristics of superconductors of the second kind, 
it is of interest to see what behavior formulas (38) and 
(39) predict with respect to frequency co, magnetic 
field H, and temperature T. Since the two sets of avail
able experimental results9 have both been obtained 
with material for which cor^Cl, we shall limit our 
analysis to this case. In the lower part of the mixed 
state (i.e., H>Hch but appreciably <Hc2), n0, nso, and 
%\ are commensurable. I t is therefore appropriate to 
expand <r(y) with respect to cor up to linear terms. We 

start with (10) and (12). 

0-0== — i(nsoe2/nKo){l+ia)T(no/nso™~ 1)} , (40) 

(7i= -\~i(nie2/2mo)) (1 —icor). (41) 

If our hypothetical metal is to resemble as best as 
possible a superconductor of the second kind in the 
mixed state, we must require that it should become 
normal for isolated values of y=yo. Planes y—yo 
correspond to the centers of fluxo'ids. We have then to 
require 

yo=(2n+l)w/k=(n+i)d, (42) 

and 
»i = »«o^§wo. (43) 

The equality sign in (43) holds at temperatures near 
zero and fields little above Hci. As H and T increase, nso 
will decrease, becoming zero as H=Hc2. In the complex 
a plane of Fig. 2, the low H and low T limit corresponds 
to a point A on the largest semicircle near the real axis. 
As H and T increase, one moves toward the origin of 
the coordinate system along the semicircle as indicated 
by the arrow. 

In order to have a suitable reference, we derive first 
the complex surface impedance Zn=Rn-\-iXn of the 
corresponding normal metal, setting, therefore, 
wi=^ eo=0. We find 

Z„= Rn+iXn= (1+i ) (cj/ec) (iTrm/n^r)^, (44) 

and obviously Rn=Xn. 
To obtain a corresponding expression for ZOH = JROII 

+iXou, we introduce (40) into (38), 

2co/7rw\1/2f cor/ no \] 
Zo„ = Zoo=— — \i+—( 1 ) , (45) 

ec \ fiQS/ [ 2 \nso / J 

and have also 

Roii = *oo= [(ww)1 '2/ee] (co2r/W /2) ( » o - ».o), (46) 

X0,, = X 0 0 = 2 (irmft 2a>/ecns0
112. (47) 

In terms of Rn—Xn, we get 

-Kou ^oo 1 (n0—nso)no1/2 

= —(cor ) 3 / 2 , (48) 
Rn Rn V2 njv 

Xon Xoo /2^ocor\1/2 

— = — = ( . (49) 
Xn Rn \ nso / 

We recall that the condition that n8o and no should be 
commensurable restricts the range of validity of 
formulas (45) to (49) to fields Hci<H<Hc2, such that 

noUT<£nso. (50) 

But since cor<<Cl, conditions (50) may well allow H to 
come fairly close to Hc2. In addition, one also finds the 
inequalities 

R0ll/Rn«Xon/Rn<l. ( 5 0 0 
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At low / / and T, such that the equality sign prevails 
in (43), formulas (48) and (49) reduce to 

Ron/Rn=(a>r)W, (51) 

XQn/Rn=2(a>Ty!*. (52) 

Before attempting discussion of these results, we shall 
derive corresponding expressions for the perpendicular 
configuration. With (10) and (12) we find first 

a = GI/GQ— itii/2 (noo)T—inso), (53) 

and then, with cor<$Cl and (43) and (50), expanding to 
linear terms in cor: 

(l-2a*)-u*=y/2{l--i(no/n.o)<*T}. (54) 

Combining (54), (39), and (45), we find 

Z 0 x = - ) - ( 1J+* , (55) 
ec\nso/ \ 2 \nso / J 

and therefore 

i ? o i = - ( I « M 1 ) , (56) 
ec\ nso / \nso / 

XQl= (2a>/ec) (2wm/nsQ)^2. (57) 

In terms of Rn=Xn, 

Roi / ^o \ 1 / 2 / 3^o \ _=(w rW_\ !]<<! (58) 
Rn \ns0/ \nso / 

and 

X(u/J?n= (4noa>T/ns0)
ll2< 1. (59) 

Inequalities similar to (50') are thus also valid in the 
perpendicular configuration. Comparing the two con
figurations, we see that 

Roi 3no—nso 
=>fl > 1 , (60) 

-^OII no—fiso 
and 

Z a i / X 0 „ = V 2 > l . (61) 

If we look again at the limit of low T and H, when 
the equality sign obtains in (43), we find 

RJRn=5^2{o>T)v\ (62) 

Xox/i?n=2V2(cor)1/2
J (63) 

and 
Roi/Ron = 5^~7. (64) 

This ratio of Roi to Ron, the largest possible one in the 
mixed state of our superconductor model, is in sur
prisingly good agreement with the measurements of 
Cardona et al.9 if we consider the great simplicity of 
the model. 

Looking at (60) we find also that the ratio R0±/Rou 
is not very dependent on temperature and magnetic 

field in the whole range (50) of applicability of (60). 
When nso<Kno, one still finds 

l W * o n = 3>£«4 . (65) 

The relative insensitivity of the above ratio against 
variations of T and H is also in agreement with experi
mental observations.9 

Our model, as was emphasized in Sec. IV, does not 
provide any information as to the detailed dependence 
on temperature and field of nso, but our results never
theless clearly show that there is very little absorption 
at low fields and temperature. As T and H increase, nSQ 
decreases, and in both configurations R and X increase. 
We also believe that the predicted frequency depend
ences of RCCQ)2 and X <* o) are probably correct as long 
as excitation absorption across the energy gap can be 
neglected. 

VII. CONCLUSIONS 

Our theory shows in a quantitative way that a metal 
with a periodic conductivity pattern in a direction 
parallel to the metal surface has an anisotropic surface 
impedance. This theory applies in a semiquantitative 
way to hard superconductors, where the concentrations 
of normal and superconducting carriers vary in the two 
independent directions perpendicular to a strong dc 
magnetic field. In contrast to the present theory, 
Dresselhaus and Dresselhaus8 have calculated the 
microwave surface impedance of superconductors in a 
magnetic field, and derived an anisotropy on the basis 
of the influence of the field on the kinetic properties of 
the normal carriers rather than on the spatial variation 
of their number. The Dresselhaus theory is aimed 
primarily at superconductors of the first kind, but 
Richards7 has shown that this theory disagrees with his 
and Spiewak's6 experimental results. Richards7 also 
suggested that the changes in carrier concentration as 
a function of total applied field, dc and microwave 
magnetic field, may afford a better explanation of his 
results. The source of the carrier concentration variation 
postulated in the present paper and the one suggested by 
Richards7 and others11,20 have different origins, and 
effects of different magnitude are expected from these 
two sources. A difference between longitudinal and 
transverse situations occurs in a homogeneous metal 
because of the vector addition of dc and microwave 
fields, Bdc and Bm w . Since B r aw is very small against BdC 

the resulting total B field will not vary in size in the 
transverse configuration, whereas it will oscillate in 
time between Bdc—Bmw and i?dc+i?mw in the longi
tudinal configuration. Assuming a superconductor with 
field-dependent carrier concentration capable of re
sponding to the oscillations of the total field at micro
wave frequencies, it is easy to conceive that the two 
configurations may result in different average surface 
impedances. The absolute size of the effect will be small, 

20 A. B. Pippard, Advan. Electron. Electron Phys. 6, 1 (1954). 
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however, on account of the small ratio Bmw/BdC. The 
effect described in the present paper arises not because 
of oscillations in time of the charge carrier concentra
tions, but because of their spatial dependence resulting 
from the penetration of quantized bundles of flux. Since 
the variations of B&c inside hard superconductors are very 
large, an effect of a different order of magnitude is 
expected, as we have succeeded in showing in the 
present investigation, and as was observed by Cardona 

I. INTRODUCTION 

TH E distortion of an ion's closed shells by an 
external crystalline field and the contributions of 

such distortions to the electric-field gradient (EFG) at 
the nucleus of an ion were first investigated by Stern-
heimer and Foley.1 The importance of such contribu
tions (called antishielding), which are appreciable in 
large ions, has been emphasized by recent Mossbauer 
effect measurements of quadrupole interactions in rare 
earths.2 Antishielding effects induced in closed shells 
by an external crystalline field are incorporated in the 
Sternheimer antishielding factor yM, such that the total 
EFG is giatt (1—Too), where qi&tt is the gradient due 
to the external environment. Neglecting refinements, 
two ways have been commonly used to estimate y^: 
(1) by numerical integration of the perturbation equa
tions as is done by Sternheimer and collaborators1; 

* Supported by the U. S. Air Force Office of Scientific Research. 
1 R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 

(1953); H. M. Foley, R. M. Sternheimer, and D. Tycko, ibid. 93, 
734 (1954); R. M. Sternheimer, ibid. 96, 951 (1954); 80, 102 
(1950); 84, 244 (1954); 86, 316 (1952); 95, 736 (1954); 105, 158 
(1957); R. M. Sternheimer and H. M. Foley, ibid. 102, 731 (1956). 

2 E.g., see S. Htifner, M. Kalvius, P. Kienle, W. Wiedemann, 
and H. Eicher, Z. Physik 175, 416 (1963); R. G. Barnes, E. 
Kankeleit, R. L. Mossbauer, and J. M. Poindexter, Phys. Rev. 
Letters 11, 253 (1963); R. L. Cohen (to be published); P. Kienle 
(to be published); R. Bauminger, L. Grodzins, and A. J. Freeman 
(to be published). 

et al.9 The two effects may, of course, occur simul
taneously, but with the very hard material used in the 
above mentioned experiments, the one effect is com
pletely hidden by the other. 
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(2) by an analytic variational perturbation technique.3 

In recent papers4,5 we described a method, based on 
the unrestricted Hartree-Fock (UHF) formalism, for 
calculating these antishielding factors, and it was shown 
that some of the difficulties associated with the pertur
bation approach, such as orthogonality, exchange, and 
self-consistency, were resolved. Since these methods6 do 
not yield equivalent results, one purpose of the present 
paper is to further calibrate and attempt to understand 
the inconsistencies which arise. Apart from these in
consistencies, the methods all suffer several severe 
shortcomings when one endeavors to relate results with 
experiment. A 7^ is, by definition, obtained by assum
ing that the crystalline charge distribution causing 
#iatt is completely external to the ion. This is an 
inadequate description of the ion's environment, and 
there arises the question of how a 7 appropriate to ex
periment differs from a 7^. 

In the present paper we report UHF estimates of the 
antishielding appropriate to rare earths and to several 

3 T . P. Das and R. Bersohn, Phys. Rev. 109, 360 (1958). 
4 R. E. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963), 

designated as I. 
5 A. J. Freeman and R. E. Watson, Phys. Rev. 132, 706 (1963), 

designated as II . 
6 See also A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 

(1959); Advan. Phys. 11, 281 (1962). 
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Sternheimer quadrupole antishielding factors ( 7 J are reported for several rare-earth ions and for several 
ions isoelectronic with I~ and Br~. Radial excitations were obtained using the self-consistent-field un
restricted Hartree-Fock method ("orbitally polarized" H-F method) described previously. Comparisons 
with perturbation-theory estimates of Sternheimer are presented. It is concluded that a roughly constant 
value of Too« ~80 is appropriate for the trivalent rare-earth ions. The relation to experiment of theoretical 
estimates of 700 for positive and negative ions is discussed. 


